All will be regard as majoracial Important Note: 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. . 1. 1. commence of the control of t

Seventh Semester B.E. Degree Examination, Dec.2016/Jan.2017 Aircraft Stability and Control

Time: 3 hrs. Max. Marks: 100

Note: Answer FIVE full questions, selecting at least TWO questions from each part.

PART - A

- 1 a. Derive expression for wing contribution, $\left(\frac{dC_m}{dC_L}\right)_w$ for the longitudinal static stability of an
 - airplane and discuss the significance of C.G. position with respect to the wing aerodynamic center. (10 Marks)
 - b. The wing-fuselage pitching moment characteristics of a high-wing, single-engine, general aviation airplane follow, along with pertinent geometric data: $C_{m_{cg}} = -0.05 0.0035\alpha$

where α is the fuselage reference line angle of attack in degrees and wf means wing fuselage.

$$S_w = 178 \text{ m}^2$$
; $X_{cg}/c = 0.1$; $b_w = 35.9 \text{ m}$; $AR_w = 7.3$; $\overline{C}_w = 5\text{m}$; $C_{L_{\alpha}} = 0.07/\text{deg}$;

$$j_w = 2^\circ$$
; $C_{L_{\alpha=0}} = 0.26$

Estimate the horizontal tail area and tail incidence angle, it, so that the complete airplane has the following pitching moment characteristics:

$$C_{\text{mcg}_{\text{wft}}} = 0.15 - 0.025\alpha$$

where α is in degrees and wft is the wing-fuselage-horizontal tail contribution. Assume the following with regard to the horizontal tail: $l_{\rm t}=14.75$ m; $\eta=1$, $AR_{\rm t}=4.85$; $C_{\rm L}=0.073/\deg$.

- 2 a. Define stick fixed neutral points and static margin. Write down the expression for stick fixed neutral point and discuss the effect of CG shift on pitching moment. (10 Marks)
 - b. Derive the expression for elevator control power; $C_{m_{sc}} = -V_H \eta C_{L_{\alpha_s}} \tau$ (10 Marks)
- 3 a. Obtain the expression for $\left(\delta_{e}\right)_{free}$ elevator deflection condition for stick-free condition.

(08 Marks)

b. How Hinge moment parameters can be estimated?

(06 Marks)

c. Write short notes on stick force gradient.

(06 Marks)

- 4 a. Define static directional stability of an airplane and explain the criteria with the relevant equations and graphs. (06 Marks)
 - b. Briefly explain the requirements for directional control and obtain the expression for rudder control effectiveness, $C_{n_{_{\rm R}}}$. (10 Marks)
 - c. What is meant by 'Rudder lock' and the 'Dorsal fin'?

(04 Marks)

PART - B

5 a. Explain the aileron control forces during maneuvers and derive the expression for stick force requirement in the form,

$$F_{a} = -qS_{a}c_{a}GC_{h_{\delta}}\delta_{a}\left[1 - 2n\frac{C_{h\alpha}}{C_{h\delta}}\right]$$
 (10 Marks)

- b. Obtain the relation for lateral control power, $C_{l_{8a}}$. (06 Marks)
- c. Explain the various methods of aileron balancing. (04 Marks)
- 6 a. Show that the propulsive forces and gravitational forces can create moments with clear sketches with all components with equations of motion. (10 Marks)
 - b. Define longitudinal dynamic stability and briefly describe the following with relevant sketches of Phugoid motion and short period motion. (10 Marks)
- 7 a. Obtain the derivatives due to the change in forward speed. (10 Marks)
 - b. Obtain the derivatives due to the time rate of change of the Angle of attack. (10 Marks)
- **8** Write short notes on the following:
 - a. Routh's criteria.
 - b. Effect of wind shear.
 - c. Flying qualities in pitch.
 - d. Cooper-Harper scale. (20 Marks)

* * * * *